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Differentially Private Recursive Least Squares
Estimation for ARX Systems with

Multi-Participants
Jianwei Tan, Jimin Wang, Member, IEEE, and Ji-Feng Zhang, Fellow, IEEE

Abstract— This paper proposes a differentially private
recursive least squares algorithm to estimate the param-
eter of autoregressive systems with exogenous inputs and
multi-participants (MP-ARX systems) and protect each par-
ticipant’s sensitive information from potential attackers. We
first give a rigorous differential privacy analysis of the algo-
rithm, and establish the quantitative relationship between
the added noises and the privacy-preserving level when the
system is asymptotically stable. The asymptotic stability of
the system is necessary for ensuring the differential privacy
of the algorithm. We then give an estimation error analysis
of the algorithm under the general and possible weakest
excitation condition without requiring the boundedness,
independence and stationarity on the regression vectors.
Particularly, when there is no regression term in the sys-
tem output and the differential privacy only on the system
output is considered, ε-differential privacy and almost sure
convergence of the algorithm can be established simultane-
ously. To minimize the estimation error of the algorithm with
ε-differential privacy, the existence of the noise intensity
is proved. Finally, two examples are given to show the
efficiency of the algorithm.

Index Terms— Differential privacy, parameter estimation,
least squares, MP-ARX systems

I. INTRODUCTION

As one of the most fundamental methods for data analysis
and system identification, the least-squares method has made
a series of theoretical achievements [1]-[6], and has been
ubiquitously employed in numerous fields, such as engineering
systems, physical systems, social systems, biological systems,
economic systems and many others [7]-[10]. For example,
the least-squares method is used to study the relationship
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between the environment in which children grow up and their
prospect for economic mobility [9], to find that how solar
radiation and pump velocity affect the temperature in heat
storage, and to construct a mathematical model for aircraft’s
dynamic behaviors [11]. In practice, the system inputs may be
provided by more than one participant, such as in game theory
[12], engineering [13] and federated learning [14]. Besides,
the existence of the regression terms also makes the model
suitable for describing control systems where the historical
output usually influences present output. One of the examples
is the disease-related diagnosis in hospitals. A patient may
go to different hospitals for different diseases in seeking of
better treatment. These hospitals want to study the relationship
between these different diseases, and a natural way is to
share patients’ information. Here the disease of interest can be
viewed as the system output, and other related disease can be
viewed as the system input that provided by different hospitals.
In this case, the MP-ARX systems can naturally be used to
model the relationship of those diseases. Hospitals need to
protect the privacy of individual patients. However, the privacy
of each participant may be breached when each participant
sends its data directly to date center if the potential attackers
exist. So the data involved in the least squares method may be
sensitive and need to be protected. In addition to the patient
medical records just mentioned, these sensitive information
may also be personal income in social research [9], medical
records in drug administration [15], or power consumption in
householder [16]. If the sensitive information is leaked, then
it may threaten property, privacy and even life. Therefore, it is
of great importance to develop a privacy-preserving estimation
method that can not only realize the benefits of the least-
squares method but also protect the sensitive information
involved.

Recently, a brief but comprehensive discussion for privacy
security in control systems has been given in [17]. Up to now,
there are many techniques developed to protect the privacy in
control systems, such as structure based techniques [18], iso-
morphic transformation [19], homomorphic encryption [20],
[21], [22], [23] and stochastic perturbation [24]-[30]. Struc-
ture based techniques and isomorphic transformation method
usually require the data center directly access the sensitive
information. These kind of methods are not applicable to
privacy protection of the least-squares method when the data
provider do not trust the data center. Homomorphic encryption
method allows addition or multiplication similar to plaintext
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in ciphertext, but this kind of method requires a large amount
of computation and is also time-consuming, which limits its
use in practice. In addition, homomorphic encryption based
privacy preserving recursive least-squares methods usually
require that at least one server is trustworthy [21].

In the stochastic perturbation technique, differential pri-
vacy and correlated noises are two commonly used methods.
Assuming that potential attackers cannot access the entire
neighborhood set of an agent, a well-designed correlated noise
sequence has been used in [25] to obfuscate the sensitive
information. As pointed out in [23], if potential attackers
obtain the information received and delivered by an agent, then
this agent’s initial state can be estimated through an iterative
observer under such correlated noises mechanism. Different
from the correlated noises privacy-preserving approach, dif-
ferential privacy possesses a more robust privacy of an agent
regardless of any auxiliary information potential attackers may
have. Besides, differential privacy is easy to implement and
computationally lightweight, and thus becomes a de facto stan-
dard for privacy protection [31], [32], [33], [34]. Up to now,
the least-squares method with differential privacy requirements
has been studied from different aspects, such as differentially
private M-estimate [35], differentially private empirical risk
minimization [36], [37], [38], differentially private linear re-
gression [39]-[44]. Differentially private M-estimate [35] and
empirical risk minimization [36], [37], [38] were presented,
but the regression vector was required to be bounded. A differ-
entially private iteratively reweighted least-squares algorithm
was developed without considering the convergence analysis
[45]. A differentially private algorithm for linear regression
learning in a decentralized fashion was presented, but the
estimation error increases linearly or exponentially [42]. The
differential privacy for linear regression by the functional
mechanism [39], high dimensional sparse linear regression
[40], [41] and linear regression with unbounded covariance
[43] were studied, respectively. However, the regressor vector
therein has independent identically distributed requirements,
which is not suitable for the systems with regression terms.

In this paper, we focus on a differentially private recur-
sive least-squares algorithm for MP-ARX systems. The ε-
differential privacy analysis of the algorithm is given for each
participant. Then, the estimation error of the algorithm are
provided under the general and possible weakest excitation
condition. The main contributions of this paper are as follows:


 A differentially private recursive least-squares algorithm
for MP-ARX systems is proposed to estimate unknown
parameters and protect each participant’s sensitive in-
formation from potential attackers. Unlike most existing
works, the system considered is with inputs distributed in
different participants, and is more general than the ARX
model [7], [11].


 The quantitative relationship between the added noises
and the privacy level ε is obtained for each participant.
Besides, it is proved that the asymptotic stability of the
system is necessary for ensuring the differential privacy
of the algorithm.


 The estimation error of the algorithm is given under
the general and possible weakest excitation condition

without requiring the boundedness, independence and
stationarity on the regression vectors. More interestingly,
when there is no regression term in the system output
and the differential privacy only on the system output is
considered, the almost sure convergence and ε-differential
privacy of the algorithm is obtained simultaneously.


 When the algorithm is ε-differentially private, the exis-
tence of the noise parameters is proved to minimize the
estimation error of the algorithm.

The rest of this paper is organized as follows. Problem
formulation is given in Section 2. The proposed algorithm,
the privacy and estimation error analysis of the algorithm are
presented in Section 3. Two examples are given to show the
efficiency of the algorithm in Section 4, and some concluding
remarks are given in Section 5.

Notation: In this paper, C, R, N, Rn denote the sets
of complex numbers, real numbers, non-negative integers
and n-dimension Euclidean space, respectively. Rm�n and
BpRnq denote the set of m-by-n real matrix and Borel
sets on Rn, respectively. pR�qn � tpx1, . . . , xnq|xi ¡
0, 1 ¤ i ¤ nu. For x P Rn, define }x}1 �°n

i�1 |xi|, }x} �
a°n

i�1 x
2
i . For M P Rm�n, define

}M} � sup}x}�1 }Mx} with x P Rn. Further, if matrix
M is symmetric and semi-positive definite, define λminpMq
and λmaxpMq as the smallest and largest eigenvalue of M ,
respectively. For sequences txku and txi,ku with xk, xi,k P
R, and any two positive integers t ¥ s, denote xrs:ts �
rxs, xs�1, . . . , xtsT , xi,rs:ts � rxi,s, xi,s�1, . . . , xi,tsT . For
D P BpRT q with px1, x2, . . . , xT q P D, denote D|xk

�
txk|px1, . . . , xk, . . . , xT q P Du. Given two real valued func-
tions fpnq and gpnq defined on N with gpnq being strictly
positive for sufficiently large n, denote fpnq � Opgpnqq if
there exist M ¡ 0 and n0 ¡ 0 such that |fpnq| ¤Mgpnq for
any n ¥ n0; fpnq � opgpnqq if for any ε ¡ 0 there exists
n0 such that |fpnq| ¤ εgpnq for any n ¡ n0. Lpµ, bq denotes
the Laplacian distribution with probability density distribution
fpx|µ, bq � 1

2b expp� |x�µ|
b q, mean µ and variance 2b2.

II. PROBLEM FORMULATION

Consider the following MP-ARX systems:

yk�1 � a1yk � a2yk�1 � � � � � apyk�1�p

� b1,1u1,k � b1,2u1,k�1 � � � � � b1,q1u1,k�1�q1

� b2,1u2,k � b2,2u2,k�1 � � � � � b2,q2u2,k�1�q2

...
� bm,1um,k � bm,2um,k�1 � � � � � bm,qmum,k�1�qm

� ωk�1, @k P N, (1)

where p P N, qi P N for i � 1, . . . ,m are known system
orders; aj P R, bi,l P R, for l � 1, . . . , qi, j � 1, . . . , p, i �
1, . . . ,m are unknown parameters; yk P R is the system
output measured by Participant P0 at time k, ui,k P R is
the system input provided by Participant Pi at time k for
i � 1, . . . ,m; ωk P R is the system noise at time k. Without
loss of generality, we assume yk�1 � 0 and ui,k � 0 for
k ¤ 0.
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For compact expression, we introduce the following vectors:

θ � ra1, . . . , ap, b1,1, . . . , b1,q1 , . . . , bm,1, . . . , bm,qmsT ,
φk � ryk, . . . , yk�1�p, u1,k, . . . , u1,k�1�q1 ,

. . . , um,k, . . . , um,k�1�qmsT ,
and rewrite (1) as:

yk�1 � θTφk � ωk�1, @k P N. (2)

Data center

…

Participant

�� �1,� ��,�

eavesdropper

P0 P1 mP

Fig. 1. Architecture of the problem: multiple participants (i.e. P0, � � � ,
Pm ) collaborate to complete a parameter identification problem that
cannot be completed by any individual participant, where participants
are low-resource parties with sensitive information that they outsource
to a powerful data center (may be one participant). The data center
has to solve an identification problem on the sensitive information of
the participants

The situation we consider in this paper is that a data center
(may be one participant) wants to collect information from
the involved participants to identify the unknown parameters
in System (1), and each participant protects its sensitive
information against the potential attacker. The architecture of
the problem is presented in Fig. 1. Participant P0’s sensitive
information is yr1:T1s, and Participant Pi’s (i � 1, � � � ,mq
sensitive information is ui,r0:T1�1s for any T1 ¥ 1. The
potential attacker may be the semi-honest data center or an
eavesdropper [17] with the following abilities:


 Eavesdropping on all communication channels between
each participant and the data center.


 Colluding with some participants to infer other partici-
pants’ sensitive information.

In this case, participants’ sensitive information will be
leaked to the potential attackers if they send information
directly to the data center. To address this issue, we propose
a differentially private recursive least-squares estimation algo-
rithm.

Next, we will provide two econometric research examples
on the scenarios considered in this paper.

The first one is on the impact study of historical investment
behaviors of various banks in economic development situation.
yk represents the economic development situation of the kth
month (internal evaluation indicators), and ui,k, i � 1, � � � ,m
represents the credit investment scale of the ith bank in the kth
month. System (1) is used to identify the relationship between
the economic development situation of the k� 1th month and
historical economic development situation and the historical
investment situation of each bank. Among them, data about
the economic development situation and the credit investment
scale of various banks need to be protected.

The second one is on the impact study of local debt
resolution investment in various provinces on overall systemic

risk governance. yk represents the systemic risk indicator
for the kth month, and ui,k, i � 1, � � � ,m represents the
government monetary policy investment received by the ith
province in the kth month. System (1) is used to identify the
relationship between the systemic risk of the k � 1th month
and cumulative systemic risk level and recent government
investments in each province. Among them, systematic risk
indicators and local debt resolution allocation quota data in
various provinces need to be protected.

Remark 1: When m � 1, the architecture of the problem
becomes two participants (i.e. P0 and P1 ) collaborate to iden-
tify parameters while protecting each participant’s sensitive
information. In this case, System (1) reduces to the normal
ARX model [7], [11]. So the results of this paper are also
applicable to the privacy issues involved in the normal ARX
model.

Remark 2: The architecture of the studied problem is simi-
lar to the federated learning, and adheres to (i) privacy of data,
(ii) local computing, and, (iii) data transmission. Federated
learning is a learning architecture where multiple devices (par-
ticipants) collaborate to train a model under the coordination of
a data central. The learning architecture adheres to (i) privacy
of data, (ii) local computing, and, (iii) model transmission [14].
Thus, the system inputs and outputs are exchanged in this
paper, while the models are exchanged in federated learning.
Besides, in this paper, local computing only occurs in the data
center while it occurs in each participant including the data
center in federated learning.

III. MAIN RESULT

A. Algorithm
For each participant, let

P0 : ȳk � yk � ηk, (3)
Pi : ūi,k � ui,k � ξi,k, i � 1, � � � ,m, (4)

where ηk � Lp0, b0q, ξi,k � Lp0, biq, b0 and bi are the
parameters to be designed. At time k, Participant Pi sends
ūi,k�1 to the data center, and Participant P0 sends ȳk to the
data center.

For the data center, let

φ̄k � rȳk, . . . , ȳk�p�1, ū1,k, . . . , ū1,k�q1�1,

. . . , ūm,k, . . . , ūm,k�qm�1sT P Rp�°m
i�1 qi ,

and at time k � 1,

āk � p1� φ̄T
k P̄kφ̄kq�1, (5)

θk�1 � θk � ākP̄kφ̄kpȳk�1 � φ̄T
k θkq, (6)

P̄k�1 � pP̄�1
0 �

ķ

i�0

φ̄T
i φ̄iq�1 � P̄k � ākP̄kφ̄kφ̄

T
k P̄k, (7)

where θk is the estimate of θ at time k, P̄�1
0 � αI for any

given small positive α, θ0 is the initial value of θ at time
k � 0.

Remark 3: The recursive algorithm (5)-(7) updates the es-
timate as soon as the new data are collected. As shown in
[10], the recursive algorithm is online and a key instrument in
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adaptive control, adaptive filtering, and adaptive prediction.
This can be applied to many practical problems, such as
ship steering, short-term prediction of power demand, digital
transmission of speech, channel equalization, monitoring and
failure detection [10]. Furthermore, the proposed algorithm
consumes less storage space and updates the estimate step by
step as the data grows, and hence protect a more robust privacy
of each participant.

Remark 4: Different from the recursive least-squares algo-
rithm [7], the perturbed information ȳk and ūi,k are used to
protect the privacy. It is worth noting that noises are added
before information is sent out. Thus, the attacker’s available
information to infer the sensitive information can only be ȳk,
ūi,k and the raw information of those participants that the
attacker colludes with.

Remark 5: The estimation of multi-participant systems is
more difficult compared with that of multi-agent systems (e.g.
[34]), because each participant cannot identify the unknown
parameters by only using its own data. This makes the com-
munications more important for the multi-participant systems,
and further makes the data more susceptible to leakage.
Therefore, privacy protection in multi-participant systems is
more necessary than that in multi-agent systems.

B. Privacy analysis

In this subsection, we first give sufficient conditions to es-
tablish ε-differential privacy of each participant, which reveals
the relationship of the privacy level and the added noise. To
do so, inspired by [24], [26], we first introduce the following
concepts on differential privacy.

Definition 1 (δ-adjacency): Given a positive real number
δ ¡ 0 and a distance space pX, dq. For any x, y P X , we say
that x and y are pδ, dq-adjacent or δ-adjacent under distance
dp�, �q if dpx, yq ¤ δ. Specifically, if X � Rn, dpx, yq �
}x � y}1 � °n

i�1 |xi � yi| ¤ δ, then we say that x and y
are δ-adjacent.

Definition 2 (ε-differential privacy): Let ε, δ be two posi-
tive numbers, pX, dq be a distance space of sensitive infor-
mation, pY,BpY qq be a measurable space of the attacker’s
observed information, pΩ,F ,Pq be a probability space, M :
X � Ω Ñ Y be a random mechanism. If for all δ-adjacent
x1, x2 P X and for all D P BpY q,

PpMpx1q P Dq ¤ eεPpMpx2q P Dq, (8)

then we say that M is ε-differentially private under δ-
adjacency.

Remark 6: (8) is standard in defining the differential pri-
vacy. Since it holds for all δ-adjacent x1, x2 P X , we
can exchange x1 with x2 and obtain PpMpx2q P Dq ¤
eεPpMpx1q P Dq. Since eε � 1 � ε for a small ε ¡ 0, it
means that for a sufficiently small ε ¡ 0, the attacker cannot
distinguish x1 from x2 based on the observation D, and hence
we say that the ε-differential privacy is achieved.

Remark 7: Both ε-differential privacy and pε, νq-
differential privacy can be used to protect the sensitive
information of each participant. Specifically, the Laplacian
noise is used in ε-differential privacy, which is analyzed by

an L1 norm, while the Gaussian noise is used in pε, νq-
differential privacy, which is analyzed by an L2 norm. For
the definition of pε, νq-differential privacy, please refer to
[24], [33]. In order to clearly express our goal and calculate
conveniently, we choose ε-differential privacy as the privacy-
preserving method in our paper. Note that if pε, νq-differential
privacy is used, then the privacy and convergence analysis of
the algorithm still holds.

Remark 8: Intuitively, δ characterizes the “closeness” of
two pieces of similar sensitive information, ε characterizes
the difficulty for an attacker to distinguish the sensitive infor-
mation x1 from its similar neighbor x2 based on the observed
information (some D � Y ). The smaller ε is, the more difficult
it is for an attacker to distinguish. Hence, smaller ε and larger
δ means a better privacy protection level.

Next, we introduce the following assumptions and lemma
for privacy analysis.

Assumption 1: System (1) is asymptotically stable, i.e.
λpzq :� 1� a1z � a2z

2 � � � � � apz
p � 0, @ |z| ¤ 1.

Assumption 2: tξi,ku, i � 1, � � � ,m, tηku are mutually in-
dependent of each other, and each sequence consists of inde-
pendent elements. Besides, ξi,k and ηk�1 are all independent
of tyku, tui,ku and tωku.

Lemma 1: If Assumption 1 holds, then there exist constants
c0 ¡ 0 and λ P p0, 1q such that

}Ak} ¤ c0λ
k, @k P N, (9)

where

A �

�
������

0 1 0 � � � 0 0
0 0 1 � � � 0 0
...

...
... � � � ...

...
0 0 0 � � � 0 1
ap ap�1 ap�2 � � � a2 a1

�
������ . (10)

Proof. By Gelfand formula in [47] and Assumption 1, the
lemma is proved. ■

Theorem 1: (Differential privacy for Participant P0) For
System (1) and Algorithm (5)-(7), let δ ¡ 0 and ε ¡ 0 be
any prescribed privacy indexes. If Assumptions 1 and 2 hold,
and Participant P0 chooses b0 such that

C1

b0
δ ¤ ε, (11)

where

C1 � 1�
?
pc0λ

1� λ
(12)

with c0 and λ satisfying (9), then Algorithm (5)-(7) is ε-
differentially private under δ-adjacency for Participant P0.
Proof. Note that the system may operate for a long time that
exceeds T1, and the existence of the regression terms makes
yk with k ¥ T1 carry former outputs’ information. Then, the
observed information for the attacker is ȳr1:T2s, where T2 ¥
T1 is the attack duration. We denote this correspondence as
M1pyr1:T1sq � ȳr1:T2s. It suffices to show that for any T2 ¥
T1, any yr1:T1s and y1r1:T1s satisfying }yr1:T1s � y1r1:T1s}1 ¤
δ, and any D P BpRT2q, we have PpM1pyr1:T1sq P Dq ¤
eεPpM1py1r1:T1sq P Dq.
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Denote ur0:T2�1s � ruT
1,r0:T2�1s, � � � , uT

m,r0:T2�1ssT . Then,
yrT1�1:T2s is determined by yr1:T1s, ur0:T2�1s, wrT1�1:T2s ac-
cording to System (1). Note that PpM1pyr1:T1sq P Dq �
Ppȳr1:T2s P D|yr1:T1sq. Then, by Assumption 2, we have

PpM1pyr1:T1sq P D|ur0:T2�1s, wrT1�1:T2sq
� Ppȳr1:T2s P D|yr1:T1s, ur0:T2�1s, wrT1�1:T2sq

�
»
RT2

p 1

2b0
qT2 �

T2¹
k�1

1D|ȳk pyk � ηkqe�
|ηk|

b0 dΛT2

� p 1

2b0
qT2

»
RT2

T2¹
k�k0

1D|ȳk pȳkqe
� |ȳk�yk|

b0 dΛ̄T2
, (13)

where dΛT2
� dη1 � � � dηT2

, dΛ̄T2
� dȳ1 � � � dȳT2

.
Similarly, one can get

PpM1py1r1:T1sq P D|ur0:T2�1s, wrT1�1:T2sq

�p 1

2b0
qT2

»
RT2

T2¹
k�k0

1D|ȳk pȳkqe
� |ȳk�y1k|

b0 dΛ̄T2 , (14)

When ur0:T2�1s and wrT1�1:T2s are given in System (1), by
Assumption 1, we have

T2̧

k�1

|yk � y1k| �
T1̧

k�1

|yk � y1k| �
T2̧

k�T1�1

|yk � y1k|

¤
T1̧

k�1

|yk � y1k| �
T2̧

k�T1�1

}yrk�1�p:ks � y1rk�1�p:ks}1

�δ �?
p

T2̧

k�T1�1

}Ak�T1pyrT1�1�p:T1s � y1rT1�1�p:T1sq}

¤p1�?
p

c0λ

1� λ
qδ � C1δ, (15)

where A is defined in (10).
Note that»

RT2

T2¹
k�k0

1D|ȳk pȳkqe
� |ȳk�yk|

b0 dΛ̄T2

¤
»
RT2

T2¹
k�1

1D|ȳk pȳkqe
� |ȳk�y1k|�|yk�y1k|

b0 dΛ̄T2

� e

°T2
k�1

|yk�y1k|

b0

»
RT2

T2¹
k�1

1D|ȳk pȳkqe
� |ȳk�y1k|

b0 dΛ̄T2
.

Then, by (11), (13)-(15) and the above inequality we obtain

e

°T2
k�1

|yk�y1k|

b0 ¤ eε and

PpM1pyr1:T1sq P D|ur0:T2�1s, wrT1�1:T2sq
¤eεPpM1py1r1:T1sq P D|ur0:T2�1s, wrT1�1:T2sq.

Therefore,

PpM1pyr1:T1sq P Dq
�
»
Ω

PpM1pyr1:T1sq P D|ur0:T2�1s, wrT1�1:T2sq
dPur0:T2�1s

dPwrT1�1:T2s

¤eε
»
Ω

PpM1py1r1:T1sq P D|ur0:T2�1s, wrT1�1:T2sq
dPur0:T2�1s

dPwrT1�1:T2s
� eεPpM1py1r1:T1sq P Dq,

where Ω is the sample space of ur0:T2�1s and wrT1�1:T2s,
Pur0:T2�1s

and PwrT1�1:T2s
are the probability measures of

ur0:T2�1s and wrT1�1:T2s, respectively. ■
Remark 9: Note that for any ε ¡ 0 and δ ¡ 0, Participant

P0 can always find b0 sufficiently large to satisfy (11). This
implies that Participant P0 can achieve any privacy protection
level by adding sufficiently ‘large’ noises, no matter how many
other participants collude with, how those participants choose
their inputs and what the system noises are.

Remark 10: If p � 0 in System (1), then we can choose
c0 � 0 in (9). Then, we have C1 � 1 in (12) and δ

b0
¤

ε in (11), which simplifies the selection of b0 to achieve ε-
differential privacy on the system output.

To establish the differential privacy for Participant Pi, i �
1, � � � ,m, the following lemma is needed.

Lemma 2: For System (1), suppose that all noises and
inputs but ui,k0 are zero for some i P t1, � � � ,mu and some
k0 ¥ 0. If |ui,k0

| ¤ δ for some δ ¡ 0 and Assumption 1
holds, then for any T ¡ 0,

°T
k�1 |yk| ¤ Ci,2δ, where

Ci,2 � p1�
?
pc0λ

1� λ
q

qi̧

j�1

|bi,j |, (16)

with c0 and λ given in (9)
Proof. Under the condition of the lemma, System (1) is
equivalent to

yk�1 � a1yk � a2yk�1 � � � � � apyk�1�p

� bi,1ui,k � . . .� bi,qiui,k�1�qi ,

where yk � 0, @k ¤ k0, ui,k � 0, k � k0.

For 1 ¤ j ¤ p, let ukpjq �
#
bi,jui,k0 , if k � k0 � j � 1,

0, otherwise.
Then, the above system is equivalent to

yk�1 � a1yk � a2yk�1 � � � � � apyk�1�p

�ukp1q � ukp2q � � � � � ukpqiq. (17)

Next, consider that yk�1pjq � a1ykpjq � a2yk�1pjq � � � � �
apyk�1�ppjq � ukpjq with ykpjq � 0 for k ¤ k0 � j and
1 ¤ j ¤ qi.

Similar to (15), we have
Ţ

k�1

|ykpjq| �
k0�j¸
k�1

|ykpjq| �
Ţ

k�k0�j�1

|ykpjq|

¤ |bi,j |δ �
Ţ

k�k0�j�1

}yrk�1�p:kspjq}1

¤ p1�
?
pc0λ

1� λ
q|bi,j |δ,

where the last inequality holds for ukpjq � 0 when k ¥ k0�j.
Therefore, it follows from the linearity of (17) that

Ţ

k�1

|yk| �
Ţ

k�1

|
qi̧

j�1

ykpjq| �
qi̧

j�1

Ţ

k�1

|ykpjq|

¤ p1�
?
pc0λ

1� λ
q

qi̧

j�1

|bi,j |δ,

which yields the result. ■
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Theorem 2: (Differential privacy for Participant Pi, i �
1, � � � ,m) For System (1) and Algorithm (5)-(7), let δ ¡ 0
and ε ¡ 0 be any prescribed privacy indexes. If Assumptions 1
and 2 hold, and Participants P0 and Pi choose b0 and bi such
that

pCi,2

b0
� 1

bi
qδ ¤ ε (18)

where Ci,2 is defined in (16), then Algorithm (5)-(7) is ε-
differentially private under δ-adjacency for Participant Pi.
Proof. Note that the attacker is able to infer ui,r0:T1�1s
easily according to System (1) by colluding with all other
participants when the system noises are zero. This makes it
impossible to protect Participant Pi’s sensitive information.
In this case, we should also protect Participant P0’s sensi-
tive information. Then, the attacker’s observed information
is rȳTr1:T2s, ū

T
i,r0:T2�1ss, where T2 ¥ T1. We denote this

correspondence as M2pui,r0:T1�1sq � rȳTr1:T2s, ū
T
i,r0:T2�1ssT .

It suffices to show that for any T2 ¥ T1, any ui,r0:T1�1s
and u1i,r0:T1�1s satisfying }ui,r0:T1�1s � u1i,r0:T1�1s}1 ¤ δ, and
any D P BpR2T2q, it holds that PpM2pui,r0:T1�1sq P Dq ¤
eεPpM2pu1i,r0:T1�1sq P Dq.

Denote

u�i,r0:T2�1s � ruT
1,r0:T2�1s, � � � , uT

i�1,r0:T2�1s,

uT
i�1,r0:T2�1s, � � � , uT

m,r0:T2�1ssT .
Note that PpM2pui,r0:T1�1sq P Dq � PprȳTr1:T2s, ū

T
i,r0:T2�1ssT P

D|ui,r0:T1�1sq and yr1:T2s is determined by u�i,r0:T2�1s,
ui,r0:T1�1s, ui,rT1:T2�1s and wr1:T2s. Then, by Assumption 2,
we have

PpM2pui,r0:T1�1sqP D|ui,rT1:T2�1s, u�i,r0:T2�1s, wr1:T2sq

�
»
R2T2

p 1

2b0
qT2p 1

2bi
qT2

T2¹
k�1

1D|ȳk pyk � ηkqe�
|ηk|

b0

1D|ūi,k�1
pui,k�1 � ξi,k�1qe�

|ξi,k�1|

bi dΛT2
dΞT2

�
»
R2T2

p 1

2b0
qT2p 1

2bi
qT2

T2¹
k�1

1D|ȳk pȳkqe
� |ȳk�yk|

b0

1D|ūi,k�1
pūi,k�1qe�

|ūi,k�1�ui,k�1|

bi dΛ̄T2
dΞ̄T2

, (19)

where dΛT2 � dη1 � � � dηT2 ,dΞT2 � dξi,0 � � � dξi,T2�1,
dΛ̄T2

� dȳ1 � � � dȳT2
,dΞ̄T2

� dūi,0 � � � dūi,T2�1.
Similarly,

PpM2pu1i,r0:T1�1sqP D|ui,rT1:T2�1s, u�i,r0:T2�1s, wr1:T2sq

�
»
R2T2

p 1

2b0
qT2p 1

2bi
qT2

T2¹
k�1

1D|ȳk pȳkqe
� |ȳk�y1k|

b0

1D|ūi,k�1
pūi,k�1qe�

|ūi,k�1�u1i,k�1|

bi dΛ̄T2
dΞ̄T2

. (20)

When ui,rT1:T2�1s, u�i,r0:T2s and wr1:T2s are given in System
(1), we have

T2̧

k�1

|ui,k�1 � u1i,k�1|�}ui,r0:T2�1s � u1i,r0:T2�1s}1¤δ. (21)

By Lemma 2, we have

T2̧

k�1

|yk � y1k| ¤ Ci,2

T1�1¸
k�0

|ui,k � u1i,k| ¤ Ci,2δ. (22)

Note that»
R2T2

T2¹
k�1

1D|ȳk pȳkqe
� |ȳk�yk|

b0 1D|ūi,k�1
pūi,k�1q

e
� |ūi,k�1�ui,k�1|

bi dΛ̄T2dΞ̄T2

¤
»
R2T2

T2¹
k�1

1D|ȳk pȳkqe
� |ȳk�y1k|�|yk�y1k|

b0 1D|ūi,k�1
pūi,k�1q

e
� |ūi,k�1�u1i,k�1|�|ui,k�1�u1i,k�1|

bi dΛ̄T2
dΞ̄T2

� e
°T2

k�1

|yk�y1k|

b0
� |ui,k�1�u1i,k�1|

bi

»
R2T2

T2¹
k�1

1D|ȳk pȳkq

e�
|ȳk�y1k|

b0 1D|ūi,k�1
pūi,k�1qe�

|ūi,k�1�u1i,k�1|

bi dΛ̄T2
dΞ̄T2

.

Then, by (18)-(22) one can get

PpM2pui,r0:T1�1sq P D|ui,rT1:T2�1s, u�i,r0:T2�1s, wr1:T2sq
¤eεPpM2pu1i,r0:T1�1sqPD|ui,rT1:T2�1s,u�i,r0:T2�1s,wr1:T2sq,

which implies that

PpM2pui,r0:T1�1sq P Dq
�
»
Ω

P
�
M2pui,r0:T1�1sq P D|ui,rT1:T2�1s, u�i,r0:T2�1s ,

dwr1:T2s
�
Pui,rT1:T2�1s

dPu�i,r0:T2�1s
dPwr1:T2s

¤ eε
»
Ω

P
�
M2pu1i,r0:T1�1sq P D|ui,rT1:T2�1s, u�i,r0:T2�1s ,

dwr1:T2s
�
Pui,rT1:T2�1s

dPu�i,r0:T2�1s
dPwr1:T2s

� eεPpM2pu1i,r0:T1�1sq P Dq,
where Ω is the sample space of ui,rT1:T2�1s, u�i,r0:T2�1s
and wr1:T2s, Pui,rT1:T2�1s

, Pu�i,r0:T2�1s
and Pwr1:T2s

are the
probability measures of ui,rT1:T2�1s, u�i,r0:T2�1s and wr1:T2s,
respectively. ■

Remark 11: Note that for any ε ¡ 0 and δ ¡ 0, Participant
Pi and Participant P0 can always find sufficiently large bi
and b0 to satisfy (18). This implies that Participant Pi can
achieve any privacy protection level by cooperating with
Participant P0 and adding sufficient ‘large’ noises, no matter
how many other participants the attacker colludes with, how
those participants choose their inputs and what the system
noises are. Furthermore, it can also be seen from the proof
that ε-differential privacy of ui,r0:T1�1s still holds even if the
attacker knows ui,rT1:T2s exactly.

Remark 12: In practice, from (18) it follows that δ
bi
¡ 0

and ε � Ci,2δ
b0

¡ 0 when Ci,2 � 0. If we take the same
δ in Theorems 1-2, then by ε � Ci,2δ

b0
¡ 0 we have b0 ¡

Ci,2δ
ε , which further implies that b0 derived from Theorem

2 must satisfy that C1δ
b0

  C1

Ci,2
ε in Theorem 1. This means

that the algorithm must first be C1ε
Ci,2

-differentially private for
Participant P0, and meanwhile there is still some ‘budget’
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(ε � Ci,2δ
b0

) left for Participant Pi to achieve ε-differential
privacy. This is consistent with the fact that we must protect
the sensitive information of Participant P0 in order to protect
the sensitive information of Participant Pi.

Remark 13: If p � 0, i.e. no regression terms in the output
of System (1), then Ci,2 � °qi

j�1 |bi,j | in (16) which also
simplifies the selection of b0 and bi to achieve ε-differential
privacy on the system input.

The following theorem shows that if System (1) is not
asymptotically stable, then ε-differential privacy cannot be
established.

Theorem 3: (Necessity of differential privacy) For System
(1) and Algorithm (5)-(7), suppose that ωk � 0, Assumption 2
holds and System (1) is not asymptotically stable. Let ε and
δ be any positive numbers.


 For Participant P0, if T1 ¥ p, then there exists δ-adjacent
yr1:T1s and y1r1:T1s, sufficiently large T2 and measurable
set D0 P BpRT2q such that PpM1pyr1:T1sq P D0q ¥
eεPpM1py1r1:T1sq P D0q.


 For Participant Pi, i � 1, � � � ,m, if T1 ¥ p and
bi,1 � 0, then there exists δ-adjacent ui,r0:T1�1s and
u1i,r0:T1�1s, sufficiently large T2 and measurable set
D0 P BpR2T2q such that PpM2pui,r0:T1�1sq P D0q ¥
eεPpM2pu1i,r0:T1�1sq P D0q.

Proof. Since System (1) is not asymptotically stable, there
exists z0 � 0 P C such that |z0| ¤ 1 and λpz0q � 0. Clearly,
λpz̄0q � 0. Define ∆k � z�k

0 � z̄�k
0 with z�1

0 � reiβ and
z̄�1
0 � re�iβ , r ¥ 1. Then, ∆k � 2rk cospkβq P R by Euler’s

formula and ∆k�1 � a1∆k � a2∆k�1 � � � � � ap∆k�1�p for
k ¥ p by the property of difference equation. In addition,
for any β P r0, 2πq, there exist n0, k0 P N such that
n0β P p2k0π � π

2 , 2k0π � π
2 q. Let α0 � |2k0π � n0β|   π

2 .
Then, there exist strictly increasing sequences tniui¥1 and
tkpniqui¥1 such that nin0β P r2kpniqπ � α0, 2kpniqπ � α0s
and cospnin0βq ¥ cospα0q � γ, where kpniq means that
integer k depends on ni. Setting ki � nin0, we have ∆ki �
2rki cospkiβq ¥ 2γ for i ¥ 1.

1) For any given yr1:T1s, let y1r1:T1s � yr1:T1s � v1
}v1}1 δ with

v1 � r∆1,∆2, � � � ,∆T1
sT . Then, }yr1:T1s � y1r1:T1s}1 ¤ δ.

Further, when ur0:T2�1s is given in System (1), we have y1ki
�

yki
� ∆ki

δ

}v1}1 for i ¥ 1.
Note that yrT1�1:T2s is determined by yr1:T1s and ur0:T2�1s

when ωk � 0. Then, we can choose D0 such that D0|ȳki
�

tx|x ¤ ykiu and D0|ȳk
� R for k � ki. Let n1 be the number

of ki satisfying ki   T2. Then, we have

PpM1py1r1:T1sq P D0|ur0:T2�1sq

�
»
Rn1

p 1

2b0
qn1 �

n1¹
i�1

1D|ȳki
pȳki

qe�
|ȳki

�y1ki
|

b0 dΛ̄n1

�
n1¹
i�1

» yki

�8
p 1

2b0
qe�

|ȳki
�pyki

�
∆ki

δ

}v1}1
q|

b0 dȳki

� e
� δ

°n1
i�1

∆ki
}v1}1b0

»
Rn1

p 1

2b0
qn1 �

n1¹
i�1

1D|ȳki
pȳki

qe�
|ȳki

�yki
|

b0 dΛ̄n1

� e
� δ

°n1
i�1

∆ki
}v1}1b0 PpM1pyr1:T1sq P D0|ur0:T2�1sq,

where dΛ̄n1
� dȳk1

dȳk2
� � � dȳkn1

.
Note that n1 Ñ 8 as T2 Ñ 8. Then, we can choose

sufficiently large T2 with n1 ¥ }v1}1b0ε
2δγ . Therefore,

PpM1pyr1:T1sq P D0|ur0:T2�1sq

�e
δ
°n1
i�1

∆ki
}v1}1b0 PpM1py1r1:T1sq P D0|ur0:T2�1sq

¥eεPpM1py1r1:T1sq P D0|ur0:T2�1sq.
Integrating ur0:T2�1s on both sides yields the result.

2) Denote xk � y1k � yk and δk � ui,k � u1i,k. Then,

xk�1 �a1xk � a2xk�1 � � � � � apxk�1�p

� bi,1δk � bi,2δk�1 � � � � � bi,qiδk�1�qi . (23)

Since T1 ¥ p and bi,1 � 0, we can always find δk, 0 ¤ k   T1

such that xT1�p�i � ∆i for i � 1, � � � , p. In fact, we can
choose δk � 0 for k   T1 � p. Then, xk � 0 for 1 ¤ k ¤
T1 � p. By setting xT1�p�1 � ∆1, we find δT1�p � ∆1{bi,1.
By setting xT1�p�2 � ∆2, we find δT1�p�1 � p∆2�a1∆1�
bi,2δT1�pq{bi,1. Following this process, we find all the required
δk for 0 ¤ k   T1.

Therefore, for any given ui,r0:T1�1s, let u1i,r0:T1�1s �
ui,r0:T1�1s � δ v2

}v2}1 with v2 � rδ0, δ1, � � � , δT1�1sT . Then,
}ui,r0:T1�1s � u1i,r0:T1�1s}1 ¤ δ.

Let ui,rT1,T2�1s and u�i,r0:T2�1s be given. Then, δk � 0 for
k ¥ T1 and xk � y1k � yk � δ∆k�p�T1

}v2}1 for k ¡ T1 � p. Note
that yrT1�1:T2s is determined by yr1:T1s and ur0:T2�1s when
ωk � 0. Then, we can choose D0 such that D0|ȳki�T1�p

�
tx|x   yki�T1�pu, D0|ȳk

� R for k � ki � T1 � p and
D0|ūk

� R for all k. Let n2 be the number of ki satisfying
ki � T1 � p ¤ T2. Then, we have

PpM2pu1i,r0:T1�1sqPD0|ui,rT1:T2�1s,u�i,r0:T2�1sq

�
»
Rn2

p 1

2b0
qn2

n2¹
i�1

1D|ȳki�T1�p
pȳki�T1�pq

e�
|ȳki�T1�p�y1ki�T1�p|

b0 dΛ̄n2

�
n2¹
i�1

» yki�T1�p

�8
p 1

2b0
qn2e�

|ȳki�T1�p
�yki�T1�p

�
δ∆ki
}v2}1

|

b0 dȳki�T1�p

�e
�δ

°n2
i�1

∆ki
}v2}1b0

»
Rn2

p 1

2b0
qn2

n2¹
i�1

1D|ȳki�T1�p
pȳki�T1�pq

e�
|ȳki�T1�p�yki�T1�p|

b0 dΛ̄n2

�e
�δ
°n2
i�1

∆ki
}v2}1b0 PpM2pui,r0:T1�1sqPD0|ui,rT1:T2�1s,u�i,r0:T2�1sq,

where dΛ̄n2
� dȳk1�T1�p � � � dȳkn2

�T1�p.
Note that n2 Ñ 8 as T2 Ñ 8. Then, we can choose

sufficiently large T2 with n2 ¥ }v2}1b0ε
2δγ . Therefore,

PpM2pui,r0:T1�1sq P D0|ui,rT1:T2�1s, u�i,r0:T2�1sq
¥eεPpM2pu1i,r0:T1�1sq P D0|ui,rT1:T2�1s, u�i,r0:T2�1sq.

Integrating ui,rT1:T2�1s, u�i,r0:T2�1s on both sides yields the
result. ■

Remark 14: Theorem 3 means that if System (1) is not
asymptotically stable, for two adjacent system outputs or
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system inputs, as long as the attack duration is sufficiently
long, then they can always be distinguished with a high
probability, thus the ε-differential privacy cannot be achieved.

Theorem 3 shows that the ratio of PpM1pyr1:T1sq P D0q
and PpM1py1r1:T1sq P D0q can be arbitrarily large. However,
this does not imply that the attacker can choose D0 to tell
yi,r0:T1�1s from y1i,r0:T1�1s easily. Because PpM1pyr1:T1sq P
D0q and PpM1py1r1:T1sq P D0q both can be so small that the
events tM1pyr1:T1sq P D0u and tM1py1r1:T1sq P D0u are both
almost impossible to happen in practice. The same reasoning
goes to PpM2pui,r0:T1�1sq P D0q and PpM2pu1i,r0:T1�1sq P
D0q. This dilemma can be solved by the following corollary
when System (1) is unstable.

Corollary 1: For System (1) and Algorithm (5)-(7), suppose
that ωk � 0, Assumption 2 holds and System (1) is unstable.
Let ε and δ be any positive numbers.


 For Participant P0, if T1 ¥ p, then there exists δ-adjacent
yr1:T1s and y1r1:T1s, sufficiently large T2 and measurable
set D0 P BpRT2q such that PpM1pyr1:T1sq P D0q ¥
eεPpM1py1r1:T1sq P D0q and PpM1pyr1:T1sq P D0q � 1

2 .

 For Participant Pi, i � 1, � � � ,m, if T1 ¥ p and
bi,1 � 0, then there exists δ-adjacent ui,r0:T1�1s and
u1i,r0:T1�1s, sufficiently large T2 and measurable set
D0 P BpR2T2q such that PpM2pui,r0:T1�1sq P D0q ¥
eεPpM2pu1i,r0:T1�1sq P D0q and PpM2pui,r0:T1�1sq P
D0q � 1

2 .
Proof. Since System (1) is unstable, there exists z0 � 0 P C
such that |z0|   1 and λpz0q � 0. Define ∆k as that defined in
the proof of Theorem 3. Then, there exists a strictly increasing
sequence tkiu and γ ¡ 0 such that ∆ki

� 2rki cos kiβ ¥
2γrki with r ¡ 1.

1) Since r ¡ 1, there exists n1 ¡ 0 such that ∆kn1
¥

}v1}1b0ε
δ . For the δ-adjacent yr1:T1s and y1r1:T1s in Theorem 3,

there exist T2 ¡ n1 and D0 P BpRT2q such that D0|ȳkn1
�

tx|x ¤ ykn1
u and D0|ȳk

� R for k � kn1
. Note that

PpM1pyr1:T1sq P D0|ur0:T2�1sq

�Ppȳkn1
¤ ykn1

q �
» ykn1

�8

1

2b0
e�

|ȳkn1
�ykn1

|

b0 dȳkn1
� 1

2
.

Integrating ur0:T2�1s on both sides yields PpM1pyr1:T1sq P
D0q � 1

2 . Similar to Theorem 3 we can prove the remaining
result.

2) Since r ¡ 1, there exists n2 ¡ 0 such that ∆kn2
¡

}v2}1b0ε
δ . For the δ-adjacent ui,r0:T1�1s and u1i,r0:T1�1s in

Theorem 3, there exist T2 ¡ n2 and D0 P BpR2T2q such
that D0|ȳkn2

� tx|x ¤ ykn2
u, D0|ȳk

� R for k � kn2
and

D0|ūi,k
� R for all k. Following the reasoning of the former

part yields the result. ■
Remark 15: If the attacker knows ui,r0:T2�1s, i �

1, � � � ,m, then from Corollary 1, the attacker can choose a
sequence of tεplqu8l�1 with εplq Ò 8. For each εplq, there exist
T2plq P N satisfying T2plq ¡ T2pl�1q and D0plq P BpRT2plqq
such that PpM1pyr1:T1sq P D0plqq ¥ 1

2 and PpM1py1r1:T1sq P
D0plqq ¤ e�εplq. In addition, for a fixed T2, it can be verified
that tȳkn1plq

P D0plqul are independent for l satisfying T2plq ¤
T2. Let T2 Ñ 8, by Borel-Cantelli theorem [46], Ppȳkn1plq

P

D0plq, i.o.q � 1, i.e. tȳkn1plq
P D0plqu happens infinitely many

times, and Ppȳ1kn1plq
P D0plqq Ó 0. In this case, for the δ-

adjacent yr1:T1s and y1r1:T1s, the attacker will finally observe
tȳkn1plq

P D0plqu and declare that ȳkn1plq
is from yr1:T1s

rather than y1r1:T1s with arbitrarily large probability. The same
reasoning works for ui,r0:T1�1s and u1i,r0:T1�1s. Therefore, we
assert that if System (1) is deterministic and unstable, as long
as the attack duration is sufficiently long, the attacker can
always find a sequence of sets D0 to distinguish the sensitive
information from some of its δ-adjacent neighbors.

C. Performance analysis

In this subsection, the estimation error of the algorithm will
be discussed. To do so, we introduce the following useful
assumptions and lemmas.

Assumption 3: tωk,Fku is a martingale difference se-
quence with tFku being a nondecreasing σ-algebra sequence
and there exists β ¥ 2 such that supk Ep|ωk�1|β |Fkq  
8, a.s.

Remark 16: Assumption 3 is a standard assumption in the
asymptotic analysis of system identification of linear systems
[2], [6], [7] and allows the noise process to be non-stationary.
In Assumption 3, a sequence of martingale differences is
broader than a sequence of independent variables, which
implies a much weaker restriction on sequence memory than
independence and allows ωk�1 to depend on Fk. Many ran-
dom variables, such as Gaussian random variables, uniformly
distributed random variables, satisfy this assumption.

Assumption 4: The regression vector tφk,Fku is an adap-
tive sequence, i.e. φk P Fk,@k ¥ 0.

Remark 17: In fact, the σ-algebra Fk in Assumptions 3
and 4 can be set to be σtyl, ui,l, ωl, ηl, ξi,l|i � 1, � � � ,m, l �
0, 1, � � � , ku with yl � 0, ωl � 0, ηl � 0 for l ¤ 0.

Lemma 3: For Algorithm (5)-(6),
°k

t�0 ātφ̄
T
t P̄tφ̄t ¤

ln |P̄�1
k�1| � ln |P̄�1

0 |.
Proof. The proof of this lemma is similar to Theorem 3.2.1
of [7], so we omit it here. ■

Following the ideas of classical least-squares methods in
linear stochastic regression model [1], [2], [5], we have
the following result for further convergence analysis of the
algorithm.

Lemma 4: For System (1) and Algorithm (5)-(7), if As-
sumptions 2-4 hold, then there exist κ ¡ 1, γ ¡ 1, such that

θ̃k�1P̄
�1
k�1θ̃k�1 � p1� 1

γ
� op1qq

ķ

t�0

ātpθ̃Tt φ̄tq2

�
"
Opln rkplnpe� ln rkqqκq � p1� γ � op1qqsk, β � 2;
Opln rkq � p1� γ � op1qqsk, β ¡ 2,

a.s.

where θ̃k � θ � θk, sk �
°k

t�0pθT pφt � φ̄tqq2 and

rk � e�
ķ

t�0

}φ̄t}2. (24)

Proof. Substituting (2) and (3) into (6) yields

θk�1 � θk � ākP̄kφ̄kpθTφk � ωk�1 � ηk�1 � θTk φ̄kq,
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which implies

θ̃k�1 � θ � θk�1

�θ̃k � ākP̄kφ̄kpθTφk � ωk�1 � ηk�1 � θTk φ̄kq
�θ̃k � ākP̄kφ̄kpθTφk � θT φ̄k � θT φ̄k � θTk φ̄k

� ωk�1 � ηk�1q
�θ̃k�ākP̄kφ̄krθ̃Tk φ̄k�θT pφk�φ̄kq�ωk�1�ηk�1s
�θ̃k � ākP̄kφ̄kpθ̃Tk φ̄k � dk � vk�1q, (25)

where dk � θT pφk � φ̄kq and vk � ωk � ηk.
Consider the following Lyapunov function: Vk � θ̃Tk P̄

�1
k θ̃k.

Then, by (25) we have

Vk�1 � θ̃Tk�1P̄
�1
k�1θ̃k�1

�rθ̃k � ākP̄kφ̄kpθ̃Tk φ̄k � dk � vk�1qsT � P̄�1
k�1

� rθ̃k � ākP̄kφ̄kpθ̃Tk φ̄k � dk � vk�1qs
�θ̃Tk P̄�1

k�1θ̃k � 2ākθ̃
T
k P̄

�1
k�1P̄kφ̄kpθ̃Tk φ̄k � dk � vk�1q

� ā2kφ̄
T
k P̄kP̄

�1
k�1P̄kφ̄kpθ̃Tk φ̄k � dk � vk�1q2. (26)

For the first term in (26), by (7) we have

θ̃Tk P̄
�1
k�1θ̃k� θ̃Tk pP̄�1

k �φ̄kφ̄
T
k qθ̃k� θ̃Tk P̄

�1
k θ̃k�pθ̃Tk φ̄kq2. (27)

For the last two terms in (26), by (5) and (7) we have

ākP̄
�1
k�1P̄kφ̄k � ākpI � φ̄kφ̄

T
k P̄kqφ̄k

�ākφ̄kp1� φ̄T
k P̄kφ̄kq � φ̄k,

and ākφ̄
T
k P̄kφ̄k � 1� āk.

Therefore,

ākθ̃
T
k P̄

�1
k�1P̄kφ̄kpθ̃Tk φ̄k � dk � vk�1q

� θ̃Tk φ̄kpθ̃Tk φ̄k � dk � vk�1q
� pθ̃Tk φ̄kq2 � θ̃Tk φ̄kdk � θ̃Tk φ̄kvk�1, (28)

and

ā2kφ̄
T
k P̄kP̄

�1
k�1P̄kφ̄kpθ̃Tk φ̄k � dk � vk�1q2

� ākφ̄
T
k P̄kφ̄kpθ̃Tk φ̄k � dk � vk�1q2

� p1� ākqpθ̃Tk φ̄k � dk � vk�1q2. (29)

By substituting (27)-(29) into (26), it follows that

Vk�1 �θ̃Tk P̄�1
k θ̃k � pθ̃Tk φ̄kq2 � 2rpθ̃Tk φ̄kq2 � θ̃Tk φ̄kdk

� θ̃Tk φ̄kvk�1s � p1� ākqpθ̃Tk φ̄k � dk � vk�1q2
�θ̃Tk P̄�1

k θ̃k � r1� 2� p1� ākqspθ̃Tk φ̄kq2
�r�2�2p1�ākqsθ̃Tk φ̄kdk�r�2�2p1�ākqsθ̃Tk φ̄kvk�1
� p1� ākqd2k � 2p1� ākqdkvk�1 � p1� ākqv2k�1

�θ̃Tk P̄�1
k θ̃k�ākpθ̃Tk φ̄kq2�2ākθ̃

T
k φ̄kdk�2ākθ̃

T
k φ̄kvk�1

� p1� ākqd2k � 2p1� ākqdkvk�1 � p1� ākqv2k�1.

Then, summing up the above equations from time 0 to time k

leads to

Vk�1 �
ķ

t�0

ātpθ̃Tt φ̄tq2

�V0�2
ķ

t�0

ātθ̃
T
t φ̄tdt�2

ķ

t�0

ātθ̃
T
t φ̄tvt�1�

ķ

t�0

p1� ātqd2t

� 2
ķ

t�0

p1� ātqdtvt�1 �
ķ

t�0

p1� ātqv2t�1. (30)

Now, we deal with summation terms on the right-hand side of
(30) one by one.

1) Note that @a, b P R, γ ¡ 1, 2ab ¤ γa2 � 1
γ b

2. Then,

� 2
ķ

t�0

ātθ̃
T
t φ̄tdt ¤

ķ

t�0

2|ātθ̃Tt φ̄tdt|

¤
ķ

t�0

rγd2t �
1

γ
pātθ̃Tt φ̄tq2s ¤

ķ

t�0

tγd2t �
1

γ
ātpθ̃Tt φ̄tq2u

�γsk � 1

γ

ķ

t�0

ātpθ̃Tt φ̄tq2. (31)

2) Since ηk � Lp0, b0q, E|ηk|x   8 for all k ¡ 0 and any
x ¥ 0. Consequently, by Assumption 3 and Cr-inequality [7],

sup
k

Ep|vk�1|β |Fkq
¤2β�1 sup

k
pEp|ωk�1|β |Fkq�Ep|ηk�1|β |Fkqq 8, (32)

which implies supk Ep|vk�1|2|Fkq   8.
Note that ākθ̃Tk φ̄k P Fk. Then, by Theorem 1.2.14 in [7],

there exist δ1 ¡ 0 and δ2 P p0, 1
2 q such that

ķ

t�0

ātθ̃
T
t φ̄tvt�1

� Opr
ķ

t�0

pātθ̃Tt φ̄tq2s 12 plnpe�
ķ

t�0

pātθ̃Tt φ̄tq2qq 1
2�δ1q

� Opr
ķ

t�0

pātθ̃Tt φ̄tq2s 12 pOp1q � opr
ķ

t�0

pātθ̃Tt φ̄tq2sδ2qqq

� Op1q � op
ķ

t�0

ātpθ̃Tt φtq2q a.s. (33)

where the second equation comes from limxÑ8
plnpe�xqq 12�δ1

xδ2

� 0.
3) Since 0 ¤ āk ¤ 1, by (5), we have

ķ

t�0

p1� ātqd2t ¤
ķ

t�0

d2t � sk. (34)

4) Note that p1 � ākqdk P Fk, supkp|vk�1|2|Fkq   8 and°k
t�0 d

2
t � sk. Then, by Theorem 1.2.14 in [7], there exist
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δ3 ¡ 0 and δ4 P p0, 1
2 q such that

ķ

t�0

p1� ātqdtvt�1

� Opr
ķ

t�0

pp1� ātqdtq2s 12 rlnpe�
ķ

t�0

pp1� ātqdtq2qs 12�δ3q

� Ops 1
2

k plnpe� skqq 1
2�δ3q � Ops 1

2

k pOp1q � opsδ4k qqq
� Op1q � opskq a.s. (35)

5) Note that by (7), P̄�1
k�1 � P̄�1

0 � °k
t�0 φ̄tφ̄

T
t is positive

definite. Then,

|P̄�1
k�1| ¤λ

p�°m
i�1 qi

max pP̄�1
k�1q   ptrP̄k�1qp�

°m
i�1 qi

�ptrP̄�1
0 �

ķ

t�0

}φ̄t}2qp�
°m

i�1 qi .

Consequently, by (24) one can get

ln |P̄�1
k�1| � Op1q �Opln rkq. (36)

By using Cr-inequality and Lyapunov inequality [7], it follows
from (32) that for any α P r2,mintβ, 4us,

sup
k

Er|v2k�1 � Epv2k�1|Fkq|α2 |Fks
¤ sup

k
2

α
2�1pEr|v2k�1|

α
2 |Fks � Er|Epv2k�1|Fkq|α2 |Fksq

¤ sup
k

22�1pEr|v2k�1|
α
2 |Fks � |Epv2k�1|Fkq|α2 q

¤ 2 sup
k
pEr|ωk�1|α|Fks � pEr|ωk�1|α|Fksq 1

α �αq
� 4 sup

k
Er|vk�1|α|Fks   8, a.s.

Note that 1 � āk � ākφ̄
T
k P̄kφ̄k P Fk by (7) and tv2k�1 �

Epv2k�1|Fkqu is a martingale difference sequence with respect
to tFku. It follows from Theorem 1.2.14 in [7], Lemma 3 and
(36) that for any δ5 ¡ 0 such that

ķ

t�0

p1� ātqpv2t�1 � Erv2t�1|Ftsq

�Opr
ķ

t�0

p1� ātqα
2 s 2

α rlnp1�
ķ

t�0

p1� ātqα
2 qs 2

α�δ5q

�Opr
ķ

t�0

p1� ātqs 2
α rlnp1�

ķ

t�0

p1� ātqqs 2
α�δ5q

�Oppln |P̄�1
k�1| � ln |P̄�1

0 |q 2
α plnp1� ln |P̄�1

k�1|
� ln |P̄�1

0 |qq 2
α�δ5q

�Op1q �Oppln rkq 2
α plnpe� ln rkqq 2

α�δ5q a.s.

For the last term in the above equation, if β � 2, then 2
α � 1;

else if β ¡ 2, then α can be taken greater than 2 with 2
α   1

and there exists δ6 P p0, 1� 2
α q such that

Oppln rkq 2
α plnpe� ln rkqq 2

α�δ5q
�Oppln rkq 2

α pOp1q � oppln rkqδ6qqq � Op1q �Opln rkq.

Thus, for both cases, set κ � 1� δ5 ¡ 1, we always have

ķ

t�0

p1� ātqpv2t�1 � Erv2t�1|Ftsq

� Op1q �Opln rkplnpe� ln rkqqκ1tβ�2uq a.s.

Therefore, by Assumption 3, Lemma 3, (36) and the above
equation,

ķ

t�0

p1� ātqv2t�1

�
ķ

t�0

p1� ātqpv2t�1 � Epv2t�1|Ftqq

�
ķ

t�0

p1� ātqEpv2t�1|Ftq

¤
ķ

t�0

p1� ātqpv2t�1 � Epv2t�1|Ftqq � σ
ķ

t�0

p1� ātq

�Op1q �Opln rkplnp1� ln rkqqκ1tβ�2uq �Opln rkq
�Op1q �Opln rkplnpe� ln rkqqκ1tβ�2uq a.s., (37)

where σ � supk Epv2k�1|Fkq by Assumption 3.
Substituting (31), (33)-(35) and (37) into (30), we have

Vk�1 � p1� 1

γ
� op1qq

ķ

t�0

ātpθ̃Tt φ̄tq2

�Op1q�p1�γ�op1qqsk�Opln rkplnpe�ln rkqqκ1tβ�2uq a.s.

Note that ln rk ¥ 1. Then, the result is obtained. ■

Theorem 4: For System (1) and Algorithm (5)-(7), suppose
that Assumptions 1-4, (11) and (18) hold. If there exist κ ¡ 1
and γ1 ¡ 0,

$&
%

ln rk�1plnpe�ln rk�1qqκ
λminpP̄�1

k q Ñ0, β � 2;
ln rk�1

λminpP̄�1
k q Ñ0, β ¡ 2,

a.s. as k Ñ8,

(38)

γ1 � lim inf
k¡0

λminp1
k
P̄�1
k q ¡ 0 a.s., (39)

then

i. Algorithm (5)-(7) is ε-differentially private under δ-
adjacency for each participant;

ii. For θ̃k � θ � θk, we have

lim
kÑ8

}θ̃k} ¤ 2}θ}
d

pb20�
°m

i�1 qib
2
i

γ1
, a.s.. (40)

Proof. The ε-differential privacy follows from Theorems 1, 2.
Next, we only need to prove (40).
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By Lemma 4, for sufficiently large k,

}θ̃k}2 ¤ θ̃Tk P̄
�1
k θ̃k

λminpP̄�1
k q

¤ 1

λminpP̄�1
k q rθ̃kP̄

�1
k θ̃k�p1� 1

γ
�op1qq

k�1̧

t�0

ātpθ̃Tt φ̄tq2s

� 1

λminpP̄�1
k q rOp1q � p1� γ � op1qqsk�1

�Opln rk�1plnpe� ln rk�1qqκ1tβ�2uqs
�Op 1

λminpP̄�1
k q q � p1� γ � op1qq sk�1

λminpP̄�1
k q

�Op ln rk�1plnpe� ln rk�1qqκ1tβ�2u

λminpP̄�1
k q q a.s. . (41)

Note that P̄�1
k is positive definite by (6). Then, it follows from

(39) that

0   1

λminpP̄�1
k q ¤

1

γ1k
a.s. , (42)

which implies

1

λminpP̄�1
k q Ñ 0, a.s. as k Ñ8. (43)

Note that

sk�1 �
k�1̧

t�0

pθT pφt � φ̄tqq2

�
k�1̧

t�0

p
p̧

j�1

ajηt�j�1 �
m̧

i�1

qi̧

j�1

bi,jξi,t�j�1q2.

Then, by Cauchy inequality and Assumption 2,

sk�1 ¤ }θ}2
k�1̧

t�0

p
p̧

j�1

η2t�j�1 �
m̧

i�1

qi̧

j�1

ξ2i,t�j�1q

¤ }θ}2
k�1̧

t�0

ppη2t �
m̧

i�1

qiξ
2
i,tq, (44)

where ηk�1 � 0, ξi,k � 0 for k   0.
Consequently, by (42), (44) and Kolmogorov’s strong law

of large numbers [46],

lim
kÑ8

sk�1

λminpP̄�1
k q ¤ lim

kÑ8
sk�1

γ1k

¤ lim
kÑ8

}θ}2°k�1
t�0 ppη2t �

°m
i�1 qiξ

2
i,tq

γ1k

�}θ}
2p2pb20 � 2

°m
i�1 qib

2
i q

γ1
a.s. . (45)

Therefore, letting k Ñ8 in (41), and by (38), (43) and (45),
we have

lim
kÑ8

}θ̃k}2 ¤ }θ}2 p1� γqp2pb20 � 2
°m

i�1 qib
2
i q

γ1
a.s. .

Let γ Ñ 1� in the above inequality. Then, the result is
obtained. ■

Remark 18: (38) in Theorem 4 are similar to the persistent
excitation condition in [3], [4], [7]. In the case of β ¡ 2,

(38) reduces to ln rk�1

λminpP̄�1
k q Ñ 0 which is equivalent to the

well-known possible weakest excitation condition for strong
consistency of the least-squares estimate for stochastic regres-
sor model [2]. It is worth pointing out that no independence
and boundedness conditions on regression vectors are needed
in Theorem 4.

Remark 19: From the definition of P̄�1
k , γ1 can be treated

as a lower bound of the energy of regressor vector φ̄. Besides,
sk�1 can be regarded as the energy of the added noises (ηk
and ξi,k). Then, γ1

2pb20�2
°m

i�1 qib2i
can be regarded as the signal-

to-noise ratio in some sense. (40) shows that the estimation
error of the algorithm is inverse to this signal-to-noise ratio.

Remark 20: Theorem 4 shows that the estimation error of
the algorithm vanishes as bi vanishes for i � 0, 1, � � � ,m.
However, (11) and (18) require bi to be larger if participants
want to seek for better protection of the sensitive information,
that is, smaller ε and larger δ.

Remark 21: As shown in Theorem 4, in order to achieve
the differential privacy, the algorithm does incur a loss on
the utility, and thus gives biased estimates. This reveals a
trade-off between the utility and the privacy of the algorithm,
which is consistent with the current literature’s results on
differentially private algorithms. The ability to achieve the
differential privacy makes our approach suitable for privacy-
critical scenarios.

An interesting fact is that ε-differential privacy and almost
sure convergence of the algorithm can be both achieved when
there is no regression term in the output of System (1) and
only Participant P0 wants to protect its sensitive information.

Theorem 5: For System (1) and Algorithm (5)-(7), suppose
that p � 0, ξi,k � 0 for i � 1, � � � ,m, k ¥ 0, Assumptions 1,
3, 4 and (11), (38) hold. If there exists κ ¡ 1,

λminpP̄�1
k q Ñ 8, a.s., (46)

then

i. For Participant P0, Algorithm (5)-(7) is ε-differentially
private under δ-adjacency.

ii. θk Ñ θ, a.s.

Proof. The first result directly follows from Theorem 1. And
so, it suffices to prove the second result.

Note that p � 0 and ξi,k � 0 for i � 1, � � � ,m, k ¥ 0,
φk � φ̄k for k ¥ 0. Then, dk � θT pφk � φ̄kq � 0 for k ¥ 0,
and further, sk � 0 for k ¥ 0.

By Lemma 4 we have

θ̃k�1P̄
�1
k�1θ̃k�1 � p1� 1

γ1
� op1qq

ķ

t�0

ātpθ̃Tt φ̄tq2

� Opln rkplnpe� ln rkqqκ1tβ�2uq �Op1q a.s.
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Therefore, for sufficiently large k,

}θ̃k}2 ¤ θ̃Tk P̄
�1
k θ̃k

λminpP̄�1
k q

¤ 1

λminpP̄�1
k q rθ̃kP̄

�1
k θ̃k � p1� 1

γ1
� op1qq

k�1̧

t�0

ātpθ̃Tt φ̄tq2s

� 1

λminpP̄�1
k q rOp1q �Opln rk�1plnpe� ln rk�1qqκ1tβ�2uqs

�Op 1

λminpP̄�1
k qq�Op lnrk�1plnpe�ln rk�1qqκ1tβ�2u

λminpP̄�1
k q q a.s.

(47)

This together with (38) and (46) implies the second result. ■
Corollary 2: For System (1) and Algorithm (5)-(7), suppose

that p � 0, ξi,k � 0 for i � 1, � � � ,m, k ¥ 0, Assumptions 1,
3, 4 and (11) hold. If there exist κ ¡ 1, γ2 ¡ 0 such that

0   lim sup
k¡0

λminp1
k
P̄�1
k q   lim sup

k¡0
λmaxp1

k
P̄�1
k q   γ2, a.s.,

(48)

then

i. For Participant P0, Algorithm (5)-(7) is ε-differentially
private under δ-adjacency.

ii. θk Ñ θ, a.s. and

}θ̃k}2 �
"

Op ln kplnpe�ln kqqκ
k q, β � 2;

Op ln k
k q, β ¡ 2,

a.s.

Proof. Note that (46) follows from (48) and ln rk � Opln kq
follows from rk ¤ 1�trP̄�1

k�1   1�pp�°m
i�1 qiqλmaxpP̄�1

k�1q
and (48). Then, the result yields from (47). ■

Remark 22: From Corollary 2, the proposed algorithm can
only lead to consistent estimates if the system is exactly of
the ARX form with the perturbations in the system output.
However, as shown in Theorem 4, when the introduced per-
turbations are in both system output and system input, the
estimate of the algorithm does not converge to the true value θ.
It should be pointed out that when there is no need for online
computing, the total least square algorithm in the errors-in-
variables problem [48] can be used to overcome this problem.
The estimate of the total least square algorithm can converge
to the true value.

D. Optimize performance with guaranteed differential
privacy

For the convenience of the analysis, let

ϕk � ryk, . . . , yk�p�1, u1,k, . . . , u1,k�q1�1, . . . ,

um,k, . . . , um,k�qm�1sT P Rp�°m
i�1 qi ,

ζk � rηk, . . . , ηk�p�1, ξ1,k, . . . , ξ1,k�q1�1, . . . ,

ξm,k, . . . , ξm,k�qm�1sT P Rp�°m
i�1 qi .

Then,

P̄�1
k �

k�1̧

t�0

pϕ̄tϕ̄
T
t � P̄�1

0 q

�
k�1̧

t�0

�pϕt � ζtqpϕT
t � ζtqT � P̄�1

0

�

�
k�1̧

t�0

ϕtϕ
T
t �

k�1̧

t�0

ζtϕ
T
t �

k�1̧

t�0

ϕtζ
T
t �

k�1̧

t�0

ζtζ
T
t �P̄�1

0 . (49)

Based on Theorem 4, we have the following corollary.
Corollary 3: For System (1) and Algorithm (5)-(7), suppose

that Assumptions 1-4, (11), (18), (38) hold. If
ķ

t�1

}ϕt}2 � Opkq, a.s., (50)

and there exists γ3 ¡ 0 such that 0   γ3  
lim infkÑ8 λminpP�1

k q{k with P�1
k � °k�1

t�0 ϕtϕ
T
t � P̄�1

0

being positive definite, then
i. Algorithm (5)-(7) is ε-differentially private under δ-

adjacency for each participant;
ii. For θ̃k � θ � θk, we have

lim sup
kÑ8

}θ̃k} ¤ 2}θ}
d

pb20�
°m

i�1 qib
2
i

γ3 � 2mini�0,1,...,m tb2i u
, a.s.

(51)
Proof. The ε-differential privacy follows from Theorem 4. We
only need to prove (51).

From (49), (50) and Theorem 1.2.14 in [7] it follows that

P̄�1
k � p1� op1qqP�1

k �
k�1̧

t�0

ζtζ
T
t . (52)

By Kolmogorov’s strong law of large numbers [46] and the
property of Laplacian distribution, we have

1

k

k�1̧

t�0

ζtζ
T
t Ñ 2diagpb20, . . . , b20loooomoooon

p

, b21, . . . , b
2
1loooomoooon

q1

, . . . , b2m, . . . , b2mlooooomooooon
qm

q. a.s.

Note that bi ¡ 0, i � 0, 1, . . . ,m, and (52) holds. Then,
1{λminpP̄�1

k q � Op 1k q, a.s.. Specifically, for any ∆ P
p0,mini�0,1,...,m tb2i uq, there exists k0 ¡ 0 such that

1

λminpP̄�1
k q ¤

1

pγ3 � 2mini�0,1,...,m tb2i u �∆qk , @k ¡ k0,

(53)

which implies
1

λminpP̄�1
k q Ñ 0, a.s. as k Ñ8. (54)

By (44), (53), and Kolmogorov’s strong law of large numbers,
we have

lim sup
kÑ8

sk�1

λminpP̄�1
k q

¤ lim sup
kÑ8

}θ}2°k�1
t�0 ppη2t �

°m
i�1 qiξ

2
i,tq

pγ3 � 2mini�0,1,...,m tb2i u �∆qk
� }θ}2p2pb20 � 2

°m
i�1 qib

2
i q

γ3 � 2mini�0,1,...,m tb2i u �∆
a.s. (55)
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Letting k Ñ8 in (41), by (38), (54) and (55), we have

lim sup
kÑ8

}θ̃k}2 ¤ }θ}2 p1� γqp2pb20 � 2
°m

i�1 qib
2
i q

γ3 � 2mini�0,1,...,m tb2i u �∆
a.s. .

Let ∆Ñ 0�, γ Ñ 1� in the above inequality. Then, the result
is obtained since ∆ is arbitrary in p0,mini�0,1,...,m tb2i uq and
γ is arbitrary in p1,8q. ■

From Corollary 3, the upper limit of the estimation er-
ror is bounded by the variances of added noises in the
form of 2}θ}

a
ppb20�

°m
i�1 qib

2
i q{pγ3 � 2mini�0,1,...,m tb2i uq.

If participants choose b0 and bi properly, then the upper
limit of the estimation error can decrease. Next, we derive
the following optimization problem for all participants to
achieve ε-differential privacy and to minimize the bound of
the estimation error’s upper limit.

argmin
bi:i�0,1,��� ,m

fpb0, � � � , bmq � pb20�
°m

i�1 qib
2
i

γ3 � 2mini�0,1,...,m tb2i u
(56)

s.t. p11q, p18q
bi ¡ 0, i � 0, 1, � � � ,m.

Lemma 5: For System (1) and Algorithm (5)-(7), let ε
and δ be two positive numbers. Then, the optimum of the
optimization problem (56) exists in a bounded set.
Proof. First, we show that the feasible set of the optimization
problem is closed. Denote v � pb0, b1, . . . , bmq P Rm�1 and
S0 � tv P Rm�1|C1δ

b0
¤ ε, b0 ¡ 0u � tv P Rm�1|b0 ¥

C1δ
ε ¡ 0u, Si � tv P Rm�1|Ci,2

b0
� 1

bi
¤ ε

δ , b0 ¡ 0, bi ¡
0u � tv P Rm�1| 1bi ¤ ε

δ ,
Ci,2

b0
¤ ε

δ , bi ¡ 0, b0 ¡ 0u � tv P
Rm�1|b0 ¥ δ

ε ¡ 0, bi ¥ Ci,2δ
ε ¡ 0u � S

1

i. Note that S1i is a
closed set and gpb0, biq � Ci,2

b0
� 1

bi
is continuous on S1i. Then,

gpb0, biq’s preimage of rε,8q, i.e. Si, is a closed set.
By the definition of Si, the feasible set of the optimization

problem (56) is
�m

i�0 Si, which is a closed set.
Next, we show that there exists a positive number r� ¡ 0

and a bounded cube Npr�q � tv P Rm�1|0   bi ¤
r�, i � 0, 1, . . . ,mu such that the optimal solution v� �
pb�0 , b�1 , . . . , b�mq P p

�m
i�0 Siq

�
Npr�q. Below the analysis is

undertaken by two cases.
Case 1: there exists i0 Pt1,2,� � �,mu satisfying Ci0,2 ¥ C1.
Since (11) is implied by (18) indexed by i0, (11) can be

omitted, i.e.
�m

i�0 Si �
�m

i�1 Si.
Rewrite (18) as Ci,2

b0
� 1

bi
¤ ε

δ . Then, for any v �
pb0, b1, . . . , bmq P

�m
i�1 Si, there always exists ∆i,1 P p0, 1q

such that
Ci,2

b0
� p1�∆i,1qε

δ
and

1

bi
¤ ∆i,1ε

δ
. (57)

Let i0 � argmaxitCi,2u. Then, ∆i,1 ¥ ∆i0,1

for i P t1, 2, . . . ,muzti0u. By choosing ∆i0,0 �
mint 1

1�Ci0,2
,
b

qi0
4pCi0,2

, 1
2u, we can claim that v is not optimal

for (56), if ∆i0,1 in (57) is strictly smaller than ∆i0,0. By this
claim, for the optimal solution v�, we have 1

b�i
¥ ∆i0,0ε

δ , i.e.

b�i ¤ δ
∆i0,0ε

for i � 1, 2, . . . ,m.
Below we will explain how this claim is established. Let

Ci0,2

b10
� p1�∆i0,0q εδ and 1

b1i0
� ∆i0,0,ε

δ . Then, from ∆i0,1  

∆i0,0 it follows that

b1i0 � δ{p∆i0,0εq ¤ bi0 and b10 �
Ci0,2δ

p1�∆i0,0qε
¡ b0.

Denote v1 � pb10, . . . , bi0�1, b
1
i0
, bi0�1, . . . , bmq. Then, by

Ci0,2

b10
¤ Ci0,2

b0
we have v1 P �m

i�1 Si.
Denote ∆i0,0�∆i0,1 by α∆i0,0 for some α P r0, 1q. Then,

b0 � b10 �
α∆i0,0

p1�∆i0,0qr1� p∆i0,0 � α∆i0,0qs
Ci0,2δ

ε

� α∆i0,0

1� p2� αq∆i0,0 � p1� αq∆2
i0,0

Ci0,2δ

ε
(58)

bi0 � b1i0 �
1

∆i0,0

α

1� α

δ

ε
. (59)

Denote m1 � mintb20, . . . , b2i0�1, b
2
i0
, b2i0�1, . . . , b

2
mu and

m0 � mintb120 , . . . , b2i0�1, b
12
i0
, b2i0�1, . . . , b

2
mu. Note that

∆i0,1 ¤ ∆i0,0 ¤ 1
1�Ci0,2

implies b10   b1i0 . Then, together
with b1i0   bi0 and b10 ¡ b0, we have m1 ¤ m0, and further

fpvq � pb20 � qi0b
2
i0
�°m

j�i0,j¥1 qjb
2
j

γ1 � 2m1

¥ pb20 � qi0b
2
i0
�°m

j�i0,j¥1 qjb
2
j

γ1 � 2m0

� fpv1q � ppb20 � b120 q � qi0pb2i0 � b12i0q
γ1 � 2m0

(60)

By (58) and (59) we have

bi0 � b1i0
b10 � b0

� 1� p2� αq∆i0,0 � p1� αq∆2
i0,0

p1� αqCi0,2∆
2
i0,0

Since α P r0, 1q, the polynomial 1�p2�αq∆i0,0�p1�αq∆2
i0,0

strictly decreases on the interval p0, 1q with respect to ∆i0,0.
Note that ∆i0,0 ¤ 1

2 . Then, 1�p2�αq∆i0,0�p1�αq∆2
i0,0

¥
1�α
4 ¥ 1

4 . Thus, by ∆i0,0 ¤
b

qi0
4pCi0,2

we obtain

bi0 � b1i0
b10 � b0

¥ 1

4Ci0,2∆
2
i0,0

¥ p

qi0
¥ ppb0 � b10q

qi0pbi0 � b1i0q
,

which means ppb20 � b120 q � qi0pb2i0 � b12i0q ¥ 0. This together
with (60) implies that fpvq ¥ fpv1q. The former claim is
established.

For any v � pb0, b1, . . . , bmq P
�m

i�1 Si, there always exists
∆i,2 P p0, 1q such that

Ci,2

b0
¤ ∆i,2

ε

δ
and

1

bi
� p1�∆i,2qε

δ
. (61)

For any i � 1, 2, . . . ,m, by properly choosing a small positive
number ∆1

i,0, we can claim that the feasible solution v is not
optimal, if ∆i,2 in (61) is strictly less than ∆1

i,0. By this claim,
for the optimal solution v�, we have Ci,2

b�0
¥ ∆1

i,0
ε
δ for i �

1, 2, . . . ,m, which implies b�0 ¤ δ
ε max1¤i¤mtCi,2

∆1
i,0
u.

Let b10piq � Ci,2δ
∆i,2ε

. Then,

|b0 � b10piq| ¤
|∆1

i,0 �∆i,2|
∆1

i,0∆i,2

Ci,2δ

ε
.

Similar to the proof of the former claim, this claim holds.
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Case 2: Ci,2   C1 for all i � 1, 2 . . . ,m.
Note that Ci,2δ

b0
  C1δ

b0
¤ ε. Then, b0 ¥ C1δ

ε by (11),
and bi ¥ C1δ

p1�Ci,2qε by (18). When b0 � b1 � � � � � bm �
b̄, fpb̄, . . . , b̄q � b̄2pp�°m

i�1 qiq
γ1�b̄2

strictly increases in b̄. Thus,
for any feasible solution v � pb0, b1, . . . , bmq with bi ¥
maxtC1δ

ε ,max1¤i¤mt C1δ
p1�Ci,2qεuu � b̄0 for i � 1, 2, . . . ,m,

we can always decrease the elements of v to its mimimum
one, and then to b̄0. By (56) we have fpvq ¥ fpb̄0, . . . , b̄0q,
which implies b� is bounded in Npb̄0q. ■

Based on the above lemma and Theorems 1, 2, Corollary
3, we have the following theorem.

Theorem 6: For System (1) and Algorithm (5)-(7), suppose
that Assumptions 1-4 and (38), (50) hold. If there exists
γ3 ¡ 0 such that 0   γ3   lim infkÑ8 λminpP�1

k q{k
with P�1

k � °k�1
t�0 ϕtϕ

T
t � P̄�1

0 being positive definite, and
each participant chooses bi according to (11) and (18) for
i � 0, 1, � � � ,m, then Algorithm (5)-(7) is ε-differentially
private under δ-adjacency for each participant, and there exists
f� such that limkÑ8 }θ̃k} ¤ 2}θ}?f�, where f� is the
minimal value of the optimization problem (56).

Remark 23: For given privacy indexes ε and δ, Theorem 6
shows the existence of the noise parameters bi’s to minimize
the estimation error of the algorithm with guaranteed differ-
ential privacy.

IV. NUMERICAL EXAMPLES

In this section, we give two examples to show the efficiency
of the proposed algorithm.

Example 1. Consider the following MP-ARX systems with
4 participants:

yk�1 �� 1

4
yk � 3

8
yk�1 � u1,k � 2u1,k�1

� 3u2,k � 4u2,k�1 � 5u3,k � 6u3,k�1 � ωk�1,(62)

where ωk � Np0, 1q. Then, we have p � q1 � q2 � q3 � 2,

A �
�
0 1
3
8 � 1

4

�
, and θ � r� 1

4 ,
3
8 , 1, 2, 3, 4, 5, 6sT . The charac-

teristic polynomial of System (62) is λpzq � 1� 1
4z� 3

8z
2 with

characteristic roots z1 � 2, z2 � � 4
3 that lie outside the unit

circle, and thus, System (62) is asymptotically stable. Note that

by Jordan decomposition, A � SJS�1 with J �
�� 3

4 0
0 1

2

�

and S �
�

3
5

1?
5

� 4
5

2?
5

�
. Then, by Remark 1, }Ak} ¤ 1.7�p 34 qk

with c0 � }S}}S�1} � 1.618, λ � 3
4 . Hence, by (12)

we have C1 � 7.864, by (16) we have C1,2 � 23.594,
C2,2 � 55.053 and C3,2 � 86.512. Next, set P̄�1

0 � I ,
θ0 � r0, 0, 0, 0, 0, 0, 0, 0sT .

To show the performance of the algorithm, set ε � 0.5, δ �
1, ui,k � Np0, σ2q with σ2 � 10, 50, 100, 500, 900, re-
spectively. Then, the estimation error of the algorithm under
different inputs is shown in Fig. 2. From Fig. 2 it follows
that the estimation error of the algorithm exists due to the
added privacy-preserving noises. But as the input becomes
more informative, i.e. σ2 increases, this error can be reduced
to an acceptable level.

To show the performance of the algorithm for the special
case in Theorem 5, we remove the regression terms (yk and
yk�1) in (62) and set ξi,k � 0, ui,k � Np0, 100q, i � 1, 2,
ε � 0.1, 0.5, 1, δ � 0.5, 1, respectively. Then, the estimation
error of the algorithm under different privacy indexes is shown
in Fig. 3. From Fig. 3 it follows that the estimation error of
the algorithm decreases to 0 no matter what values ε and δ
take on.

Next, we show the influence of ε and δ on the estimation
error of the algorithm, respectively. Let δ � 1, ui,k � Np0, 10q
be fixed, and choose ε � 0.5, 1, 2, 4, 8, respectively. Then,
the estimation error of the algorithm under different ε is
shown in Fig. 4 (a). From Fig. 4 (a) it follows that for
given δ, the larger ε is, the smaller the estimation error is.
Let ε � 0.5, ui,k � Np0, 100q be fixed, and choose δ �
0.1, 0.5, 1, 5, 10, respectively. Then, the estimation error of the
algorithm under different δ is shown in Fig. 4 (b). From Fig.
4 (b) it follows that for given ε, the smaller δ is, the smaller
the estimation error is. Hence, from Fig. 4 it follows that the
smaller the noise variance (the larger ε in Fig. 4 (a) or the
smaller δ in Fig. 4 (b)) is, the smaller the estimation error is.

0 20 40 60 80 100
iteration time (k)

0

20

40

60

80

100

||
k

||

2 = 10
2 = 50
2 = 100
2 = 500
2 = 900

Fig. 2. Estimation error of the algorithm under different inputs
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= 0.5, = 0.5
= 0.5, = 1.0
= 1.0, = 0.5
= 1.0, = 1.0

Fig. 3. Estimation error of the algorithm under different privacy indexes
when p � ξ1,k � ξ2,k � 0

Example 2. In econometric research fields, we study the
impact of historical investment behaviors of 3 banks on the
economic development situation while protecting the sensitive
information involved. yk represents the economic develop-
ment situation of the kth month (internal evaluation indica-
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tors needed to be protected), and ui,k represents the credit
investment scale of the ith bank in the kth month. ωk�1

represents the uncertainty in the k�1th month. Both economic
development situation and credit investment scale of each bank
are sensitive information. The following MP-ARX systems
with 4 participants are given to investigate the relationship
between the economic development situation of the k � 1th
month and the historical investment scale of each bank.

yk�1 �� 1

4
yk � 3

8
yk�1 � 2u1,k � 2.2u1,k�1 � 1.5u2,k

� 2.5u2,k�1 � 2.4u3,k � 1.6u3,k�1 � ωk�1,

We show the estimation error of the algorithm under different
ε. Let δ � 1, ui,k � Np0, 10q be fixed, and choose ε �
0.5, 1, 2, 4, 8, respectively. Then, the estimation error of the
algorithm under different ε is shown in Fig. 5. From Fig. 5 it
follows that the larger ε is, the smaller the estimation error is.
This is consistent with the theoretical analysis.
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(a) Different ε

0 100 200 300 400 500
iteration time (k)

0

2

4

6

8

10

12

14

||
k

||

= 0.1
= 0.5
= 1.0
= 5.0
= 10.0

(b) Different δ

Fig. 4. Estimation error of the algorithm under different variances of the
added Laplacian noise
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Fig. 5. Estimation error of the algorithm under different ε

V. CONCLUSIONS

This paper has proposed a differentially private recursive
least-squares algorithm for MP-ARX systems. A rigorous
mathematical proof of differential privacy of the algorithm
is established when the system is asymptotically stable, and
well-designed noises are introduced to protect participants’
sensitive information. We show that the asymptotic stability
of the system is necessary for ensuring the differential privacy
of the algorithm. The estimation error and convergence rate

of the algorithm are provided under the general and possible
weakest excitation condition without requiring the bounded-
ness, independence and stationarity on the regression vectors.
In particular, if there is no regression term in the system
output and the differential privacy only on the system output
is considered, then the ε-differential privacy and almost sure
convergence of the algorithm can be achieved simultaneously.
Furthermore, we prove the existence of the added noise
intensity to minimize the estimation error of the algorithm
with ε-differential privacy.

The algorithm proposed in this paper is not unbiased. In
the future work, it is worth considering how to design a
recursive identification algorithm for MP-ARX systems that
can simultaneously achieve unbiased estimates and differential
privacy for each participant.
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[15] K. J. Åström and R. M. Murray, Feedback systems: an introduction for
scientists and engineers. Princeton University Press, 2008.

[16] M. A. Lisovich, D. K. Mulligan, and S. B. Wicker, “Inferring personal
information from demand-response systems,” IEEE Security & Privacy,
vol. 8, no. 1, pp. 11-20, 2010.

[17] J. F. Zhang, J. W. Tan, and J.M. Wang, “Privacy security in control
systems,” Science China Information Sciences, vol. 64, pp. 176201:1-
176201:3, 2021.

[18] Y. Q. Wang, “Privacy-preserving average consensus via state decompo-
sition,” IEEE Transactions on Automatic Control, vol. 64, no. 11, pp.
4711-4716, 2019.

[19] A. Sultangazin and P. Tabuada, “Symmetries and isomorphisms for
privacy in control over the cloud,” IEEE Transactions on Automatic
Control, vol. 66, no. 2, pp. 538-549, 2021.



16 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. XX, XXXX 2024

[20] C. B. Xu, Y. L. Zhao, and J. F. Zhang, “Information security protocol
based system identification with binary-valued observations,” Journal of
Systems Science and Complexity, vol. 31, no. 4, pp. 946-963, 2018.

[21] K. Tjell, I. Cascudo, and R. Wisniewski, “Privacy preserving recursive
least squares solutions,” In 18th European Control Conference, pp. 3490-
3495, 2019.

[22] Y. Lu and M. H. Zhu, “Privacy preserving distributed optimization using
homomorphic encryption,” Automatica, vol. 96, pp. 314-325, 2018.

[23] M. Ruan, H. Gao and Y.Q. Wang, “Secure and privacy-preserving
consensus”, IEEE Transactions on Automatic Control, vol. 64, no. 10,
pp. 4035-4049, 2019.

[24] J. L Ny and G. J. Pappas, “Differentially private filtering,” IEEE
Transactions on Automatic Control, vol. 59, no. 2, pp. 341-354, 2014.

[25] Y. L. Mo and R. M. Murray, “Privacy preserving average consensus,”
IEEE Transactions on Automatic Control, vol. 62, no. 2, pp. 753-765,
2017.

[26] E. Nozari, P. Tallapragada, and J. Cortes, “Differentially private average
consensus: Obstructions, trade-offs, and optimal algorithm design,”
Automatica, vol. 81, pp. 221-231, 2017.

[27] X. K. Liu, J. F. Zhang, and J. M. Wang, “Differentially private consen-
sus algorithm for continuous-time heterogeneous multi-agent systems,”
Automatica, vol. 122, 109283, 2020.

[28] Y. Kawano and M. Cao, “Design of privacy-preserving dynamic con-
trollers,” IEEE Transactions on Automatic Control, vol. 65, no. 9, pp.
3863-3878, 2020.

[29] J. M. Wang, J.F. Zhang, and X. K. He, “Differentially private distributed
algorithms for stochastic aggregative games,” Automatica, vol. 142,
110440, 2022.

[30] E. Nekouei, H. Sandberg, M. Skoglund, and K. H. Johansson, “Optimal
privacy-aware estimation,” IEEE Transactions on Automatic Control,
vol. 67, no. 5, pp. 2253-2266, 2022.

[31] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise
to sensitivity in private data analysis,” In Theory of cryptography
conference, pp. 265-284, 2006.

[32] C. Dwork, “Differential privacy,” In International Colloquium on Au-
tomata, Languages, and Programming, pp. 1-12, 2006.

[33] C. Dwork and A. Roth, “The algorithmic foundations of differential
privacy,” Foundations and Trends in Theoretical Computer Science, vol.
9, no. 3-4, pp. 211-407, 2014.

[34] Y. Liu, J. Liu, and T. Basar, “Differentially private gossip gradient
descent,” in Proc. 57th IEEE Conf. Decis. Control, Miami, FL, USA,
pp. 2777-2782, Dec. 17-19, 2018.

[35] J. Lei, “Differentially private M-estimators,” Advances in Neural Infor-
mation Processing Systems, vol. 24, pp. 361-369, 2011.

[36] K. Chaudhuri, C. Monteleoni, and D. Sarwate, “Differentially private
empirical risk minimization,” The Journal of Machine Learning Re-
search, vol. 12, pp. 1069-1109, 2011.

[37] D. Kifer, A. Smith, and A. Thakurta, “Private convex empirical risk min-
imization and high-dimensional regression,” In Conference on Learning
Theory, pp. 25.1-25.40, 2012.

[38] R. Bassily, A. Smith, and A. Thakurta, “Private empirical risk minimiza-
tion: Efficient algorithms and tight error bounds,” In 2014 IEEE 55th
Annual Symposium on Foundations of Computer Science, pp. 464-473,
2014.

[39] J. Zhang, Z. J. Zhang, X. K. Xiao, Y. Yang, and M. Winslett, “Functional
mechanism: Regression analysis under differential privacy,” Proceedings
of the VLDB Endowment, vol. 5, no. 11, pp. 1364-1375, 2012.

[40] D. Wang, A. Smith, and J. H. Xu, “High dimensional sparse linear
regression under local differential privacy: Power and limitations,” In
2018 NIPS workshop in Privacy-Preserving Machine Learning, vol. 235,
2018.

[41] D. Wang and J. H. Xu, “On sparse linear regression in the local
differential privacy model,” In International Conference on Machine
Learning, pp. 6628-6637, 2019.

[42] Y. Liu, X. Zhang, S. Qin, and X. P. Lei, “Differentially private linear
regression over fully decentralized datasets,” 33rd Conference on Neural
Information Processing Systems (NeurIPS), 2020.

[43] J. Milionis, A. Kalavasis, D. Fotakis, and S. Ioannidis, “Differentially
private regression with unbounded covariates,” In International Confer-
ence on Artificial Intelligence and Statistics, pp. 3242-3273, 2022.

[44] W. Liu, X. Mao, X. Zhang, X. Zhang, “Efficient sparse least absolute
deviation regression with differential privacy”, IEEE Transactions on
Information Forensics and Security, vol. 19, pp. 2328-2339, 2024.

[45] M. Park and M. Welling, “A note on privacy preserving iteratively
reweighted least squares,” arXiv:1605.07511, 2016.

[46] Y. S. Chow and H. Teicher, Probability Theory: Independence, Inter-
changeability, Martingales. Springer US, New York, NY, 1988.

[47] R. A. Horn and C. R. Johnson, Matrix analysis. Cambridge university
press, 2012.
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